Table I

N－Al＿Kyl－and N－Aralkylaminoembanethiondlfuric Acid．

$\mathrm{RNHCH}_{2} \mathrm{CH}_{2} \mathrm{SSO}_{3} \mathrm{H}$

12	M．p．${ }^{\circ}$（	$\text { rield }{ }^{x}$	Nethod of syn－ thesis	Recrysin． solvent	Molecular forntula	$1:$	$\begin{gathered} \text { Caled } \\ 11 \end{gathered}$	$\begin{aligned} & \% \\ & N \end{aligned}$	S	C	$\begin{gathered} - \text { Foun } \\ \text { H } \end{gathered}$		K
Nethys	16：3－168 5	58.4	$\mathrm{B}^{\text {b }}$	H2O－E6OH	（ $\left.\mathrm{H}_{2} \mathrm{NO}\right)_{\text {cos }}$	$\because 1.04$	524	8．18	35.45	20.94	5．28	7.88	：\％．17
Sthyl	183－184．5 dec．	56.7	$\mathrm{B}^{\text {c }}$	$\mathrm{H}_{2} \mathrm{O}-\mathrm{BtOH}$	$\mathrm{C}_{4} \mathrm{HaNO} 0 \mathrm{~S}_{4}$	25.93	5.90	7.50	34.61	25．64	6.25	$7 .: 1$	3.146
n－Propyl	173 dee．	80.3	$\mathrm{B}^{\text {d }}$	$\mathrm{H}_{2} \mathrm{O}$	（\％115N0）	30．1\％	$6 . \bar{i}$	7．03	32.18	30.26	6.97	（i） 10	3268
¢－Butsl	159－160	68.7	$13^{\text {c }}$	119	（ 111 sNO Na	38.38	7.09	6． 57	30.06	33.74	6.85	6． $4: 1$	29.78
n－Pentyl	183－184 dec．	18．3	1	120		30.98	7.51	6． 16	2821	37.11	7．14	0．：2	28.5
$n-H e x y l$	182 dec．	26.5	A	$\mathrm{H}_{2} \mathrm{O}$		30.80	7.93	5． 80	26.50	40．0．4	8.15	7． 76	$\because 6.51$
\％－Heptyl	102－194 dee．	50.0	A	11.0	（1140NOs\％	42.22	8.29	－5．49	25.11	42.95	8.55	i） 68	$24.9!$
n－Octyl	190－190．s der．	40.7	1	$11: 0$	\therefore C110， $\mathrm{NO}_{3} \mathrm{n}$ ：	44．08	8.60	$\therefore 20$	23.80	4.1 .91	8.90	5． 20	9\％．71
n－Nonyl	194 dec．	20． 0	A	10\％EtOH		46.61	8．8：4	4.94	29.62	47.06	8.95	4.84	22.88
$n-$ Decyl	190－192 slee．	37.6	． 1	10\％EtOH	$\mathrm{O}_{2} 11_{2} \mathrm{NO}_{3} \mathrm{R}$	48.45	（1）\％	1.71	21.66	48.71	9.22	5，21	22．22
n－T̈ndeesl	191－193	22.8	A	$30 \% \mathrm{EtOll}$	（： 211.9 NO	90．12	9.34	4．50）	20.39	50.39	0.97	1． 22	20.65
$x_{\text {－}}$ Oodecyl	196－198 dee．	39.4	A	$30 \% \mathrm{EtOlt}$	CulluNO，	51．65）	0.60	1.30	19.70	51.81	9.80	3.94	1！1，1．
$n-$ Prideryl	206．5－207 dee．	28.3	1	$30 \% \mathrm{EtOH}$	（mblanoms	2．）．05	8.79	1．13	18.84	53.43	9.82	4.04	18． 110
$x_{\text {－Tetradecyl }}$	207．5－208．5 dec．	21.3	A	$50 \% \mathrm{EtOH}$	$\mathrm{Cb}_{6} 1 \mathrm{~m}_{5} \mathrm{NO}_{3} \mathrm{~S}$ ：	54．35	9.98	3.96	18.14	－24．36	10.11	4．1：3	18.19
n－Pentadecyl	203.5 dec．	26.6	A	50\％EtOH	Callan $\mathrm{NO}_{3} \mathrm{~S}$ ．	55．54	10.15	3.81	17.4	55． 93	9.88	3 91	17.5
n－Hexalecy	199－200 dee．	15， 0	．	$30 \% \mathrm{EtOH}$	$\mathrm{C}_{88} \mathrm{ll}_{33} \mathrm{NO}_{3} \mathrm{~S}$ ：	56.65	10．30	3.67	16.80	50.84	10.17	： 3.85	16． 71
u－Heptarders	197－197．5 der．	30．5	I	60\％F\％tOll	（＇， $\mathrm{H}_{4} \mathrm{NO} \mathrm{N}$ ：	57.07	10.44	© 5.4	14． 21	57．31	10.27	3.65	16．5）
n－Octaders－1	190－191 dec．	14.7	A	$60 \% \mathrm{EtOH}$	（2 $\mathrm{H}_{42} \mathrm{NO}_{5} \mathrm{~S}$	58．63	10．58	3.12	15．9．7	58.69	10.61	3.47	15． 414
Isopropsl	189 dec．	65． 3	3°	11.0	（ 314 NO ）	30） 13	6	7．03	32.18	20.23	6． 46	709	32%
t－Butyl	230－231 dee．	47.1	F^{j}	11.0	（ 1115 NO$)_{3} \times$	878	7.09	6.57	30.06	33.69	0．8\％	6． 40	30． 24
2－Hept ${ }^{\text {d }}$	169．5－170 dee．	660	B	11.0	O：11，NOS	12.32	¢． 29	5． 49	25.11	42.4	8.18	5． 61	25．38
2－Outrl	178－179	72.2	B^{0}	MeCN	（blluNOs，	44.58	880	5． 20	23.80	44.04	8.44	5.44	2\％．62
3 －Octyl	124	30.0	B	11.0	Cimllanox	44.58	8.00	5． 20	2.380	44.45	8.74	－2． 21	23.75
4－Octrel	117．i－118	69.8	A	$\mathrm{H}_{3} \mathrm{O}$	（？nHENNOSS	44.58	8.60	5． 20	23.80	44.66	8.9	5． 16	24.07
Cyelonetyl	190 der．	64.8	13	11.0	$919112 \mathrm{NO}_{5} \mathrm{~S}$	44.91	7.96	5． 21	23．48	44.87	7．42	5.11	24.39
2－Etliyl－1－liexyl	145－146	4.9	.n	F．OH	Cull NOS．	44.58	8.80	i． 20	23.80	44.57	8.8 .4	i． 00	23.95
lsonomyl	195－197	24.0	． 1	11.0	$\mathrm{Cu}_{4} \mathrm{ll}_{2} \mathrm{NO}_{8} \mathrm{E}$	46.61	889	1.84	$\underline{22}$（3：	46.56	9.02	＋ 4.80	29.67
2－Nonyl	187－188	55.8	B	HっO	C， $\mathrm{ClO}_{2} \mathrm{NO}_{5} \mathrm{~N}_{2}$	46.61	8.89	4.94	22.68	t6． 71	8.79	4.96	22.62
$3-N$ Nonyl	141－142	29.1	13	Merchor		16． 61	8.89	4.94		46.41	8.91	5． 04	22.68
$4-\mathrm{N}$ onyl	99	45	13	EtOAc	（sillasNOs．	46.61	8.89	4.51	22.63	47.07	9.05	＋．94	22.41
2－17ersl	189 dee．	29： 2	I	50% EtOll	（\％11\％NO）	18.45	（1．） 5	4.71	21.50	48.48	9．20	4.75	$\because 1.60$
3－1）ers	128－130	\％ 0.0	13	EtOAc		48.45	（1） 15	471	21.06	48.72	4.20	4.37	21.34
\because－Vindecsl	193－194 ilew	71.1	13	$4 \% \% \mathrm{NtOll}$	（\％1129がが，	50．12	9.38	4．50	20.34	$49.8 \pm$	0.21	4．45	2075
Benzyl	197－197．5 dee．	112.5	B^{i}	$\mathrm{Hl}_{6} \mathrm{O}$	Cal1， $\mathrm{NO}_{3} \mathrm{C}$	43.70	5.28	5． 66	25.93	＋ii．89	3． 51	3． 80	25.72
Pbenetliyl	186－186，5 der．	14.6	d	11.0	Calltisom：	4 F	5.74	5． 36	2．1．54	－5．7． 82	5.84	5．32	24.4
Phenylpropyl	173－174 dec．	29.9	1	$11_{2} \mathrm{O}$	C：11， NO_{3}	47.97	6． 22	5． 09	$2!29$	48.1%	6．39	5． 12	23.42
Phenoxyethyl	190 ilec．	6．5	λ^{7}	11.6		4.3 .80	i 4.5	505	$2: 12$	4：3．64	3.42	5.02	22．911

a Yields of thiosulfuric acids prepared by nethod A are based on alky bromides and yields of those prepared by method B are based nn X－alkylaminoethyl bronide hydrobromides．${ }^{b}$ Reported nı．p． 160°（ K ．Schimmelschmidt，H．Hoffmann，and E．Mundlos，Chem． Ber．，96， 38 （1963））．c Starting amino alcohol obtained from Eastman Organic Chemicals．a Because the b．p．of N－n－propylanino－ ethand is not sufficiently different from that of 2 －aminoethand for convenient separation of the two compounds by distillation，the alcolol was prepared by treating n－propylamine with ethylene oxide by the method of J．H．Biel，J．An．Chem．Soc．，71，1306（1940）． ＂Starting annino alcohol obtained from Pennsalt Chemicals Corp．F Starting minine aleohol obtained from Rohn and Haas Company． a Starting amino alcohol ubtained from Universal Oil Products Company．＂Reaction ran S days．．Starting animo almolnol obtained from Miles Chemical Company．${ }^{i}$ Reaction ran 2 weeks．

N－Alkylaminoethanethiosulfuric Acids．－An equinolar mixture of sodium thiosulfate pentahydrate and an N－alkylaminoethyl bronide hydrobromide in water or water－ethanol，depending on the solubility of the latter reactant，was heated near the reflux temperature for approximately 1 hr ．Completion of the reaction was indicated by failure of sulfur to precipitate from an aliquot of the solution which was acidified with mineral acid．In most in－ stances，the Bunte salt was sufficiently water insoluble to crystal－ lize from solution upon cooling．Solutions containing a Bunte s：ilt which was relatively water soluble were concentrated and the produrt was separated from sodiun bromide by crestallization． Several recrystallizations were required in order to olbtain a pure， halide－free product．

2－（Trimethylammonium）ethyl Thiosulfate．－A solution of 23.7 g．（ 0.15 mole）of（ 2 －chloroethyl）trimethylammonium chloride and 37.3 g ．（ 0.15 mole ）of sodium thiosulfate pentahydrate in 30 ml ． of water was heated at reflux for 1 hr ．On cooling．the crystalline prodnct separated from solution．Recrystallization once from water followed by several treatments of the produr with boiling wethanol to renove remaining sodian bromide afforded 20.1 g．（ 69.1% ）of $2-($ trimethylanmoniun $)$ erhyl（Wiosulfate．in．p． $267-269^{\circ}$ dee．

Anal．Caled for $\left(\% \mathrm{H}_{13} \mathrm{NO}_{3} \mathrm{~S}_{2}: \mathrm{C}, 30.13 ; \mathrm{H}, 6.57 ; \mathrm{N}, 7.03\right.$ ； $\therefore, 32.18$ ．Found：C， $30.11 ;$ H， $6.74 ; \mathrm{N}, 7.04 ; \mathrm{s}, 31.97$.

Acknowledgment．－We wish to thank Dr．Thomas R．Sweeney for many helpful suggestions and Messrs．L．Hafner，J．D．White， and S．Abdou－Sabet for technical assistance．

Aminooxyacetic Acid Derivatives

Alfred Ryoharlson，Jr．

Department of Organic Research，Scientific Laboratories，The H1m． S．Merrell Company，Division of Richardson－Merrell Int．， Cincinnati．Ohio

Recewed April 17，196．4

Aninooxyncetie acid．being a derivative oi hydroxylamine， lends itself to reactions with carbonyl componnds．${ }^{-8}$ liarlier work ${ }^{4,5}$ has shown that certain oxime derivatives such as these have exhibited plant growth inhibition ${ }^{4}$ or vitamin K activity ${ }^{-}$； furthermore，mminooxycetic acid itself has been reported ${ }^{8}$ to have antibacterind activity．The componnds described here were prepared in weler ilat her might he investigated as poten－

[^0]Table I
Aldoxime Ethers, $\mathrm{RCH}=\mathrm{NOCH}_{2} \mathrm{CO}_{2} \mathrm{R}^{\prime}$

Compd.	R	R'	M.p., ${ }^{\circ} \mathrm{C}$.	Method ${ }^{\text {a }}$	Yield. \%	$\overbrace{\text { Caled. }} \%$	$\underset{\text { Found }}{\mathrm{C}}$	Caled.	$\underset{\text { Found }}{\mathrm{H}}$	Caled.	$\stackrel{N}{\text { Found }}$	Solvent ${ }^{\text {b }}$
I		H	$145-147^{\text {c }}$	A	41	48.22	48.53	3.59	3.77	12.49	12.66	B-PE
II		H	128.5-130.0	B	18	68.11	68.17	4.84	4.63	6.11	6.14	E-PE
III		H	208-209 dec.	B	42	73.11	73.04	4.69	4.61	5.02	4.85	E
IV		$\mathrm{C}_{2} \mathrm{H}_{5}$	$\begin{aligned} & 69-70 \\ & 69.5-70.5 \end{aligned}$	$\begin{aligned} & \text { I) } \\ & \text { E } \end{aligned}$	79	74.25	$\begin{aligned} & 74.04 \\ & 74.24 \end{aligned}$	5.58	$\begin{aligned} & 5.53 \\ & 5.38 \end{aligned}$	4.56	$\begin{aligned} & 4.25 \\ & 4.67 \end{aligned}$	$\begin{aligned} & \text { PE } \\ & \text { PE } \end{aligned}$
V		H	141-142	C	10	50.00	50.32	4.79	4.74	16.67	16.53	Et-PE
VI		H	107-108	B	14	52.74	52.86	5.53	5.34	15.38	15.24	Et-PE
VII		H	163-164 ${ }^{\text {d }}$	B	16	39.26	39.15	2.83	2.84	13.08	13.03	E-PE
VIII		H	129-131	B	31	45.39	45.67	3.81	3.76	7.56	7,31	Et-PE
IX		H	$\begin{aligned} & 180-183 \text { dec. } \\ & 179-180 \text { dec. } \end{aligned}$	$\begin{aligned} & \text { C } \\ & \text { B } \end{aligned}$	$\begin{aligned} & 36 \\ & 56 \end{aligned}$	53.33	$\begin{aligned} & 53.66 \\ & 53.42 \end{aligned}$	4.47	$\begin{aligned} & 4.48 \\ & 4.41 \end{aligned}$	15.55	$\begin{aligned} & 15.15 \\ & 15.34 \end{aligned}$	$\begin{aligned} & \mathrm{E} \\ & \mathrm{E} \end{aligned}$
X		H	146-147	B	26	55.67	55.60	5.19	5.02	14.43	14.12	E-PE
XI		H	172-173	B	44	53.33	53.47	4.47	4.21	15.55	15.54	E
XII		H	223 dec. ${ }^{\text {e }}$	B	52	53.33	53.10	4.47	4.23	15.55	15.40	E
XIII		H	189-190 dec.	B	12	60.54	60.93	4.62	4.52	12.84	12.86	E-PE

${ }^{a}$ See Experimental. ${ }^{b}$ Recrystallization solvents: $\mathrm{B}=$ benzene, $\mathrm{E}=$ ethanol, $\mathrm{Et}=$ ether, $\mathrm{PE}=$ petroleum ether (b. p. $60-90^{\circ}$). ${ }^{c}$ Lit. 7 m.p. $144-145^{\circ} .{ }^{d}$ Lit. 7 m.p. $165-166^{\circ} .{ }^{\quad}$ Lit. 7 m.p. $218-221^{\circ}$.

Table II
Ketoxime Ethers, $\mathrm{R}=\mathrm{NOCH}_{2} \mathrm{CO}_{2} \mathrm{H}$

Compd.	R	M.p. ${ }^{\circ} \mathrm{C}$.	Method ${ }^{\text {a }}$	Yield. $\%$	--\% $\mathrm{C}-\square$		- \% H-		-. $\% \mathrm{~N}-$		Solvent ${ }^{0}$
					Caled.	Found	Caled.	Found	Caled.	Found	
XIV	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C}\left(\mathrm{CH}_{8}\right)$	95.0-96.5 ${ }^{\text {c }}$	B	54	62.17	62.53	5.74	5.66	7.25	7.23	PE
XV	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C}\left(\mathrm{C}_{4} \mathrm{H}_{5}\right)$	64.5-66.0 ${ }^{\text {d }}$	B	70	63.77	63.99	6.32	5.96	6.76	6.61	PE
XVI		85-87	A	45	53.49	53.45	7.06	7.06	8.91	8.82	PE
XVII		89-90	A	28	66.94	67.29	6.48	6.69	6.01	5.98	PE
XVIII	$=$	$52-53$	A	29	58.36	58.13	8.16	8.44	7.56	7.54	PE
XIX		237-239 dee.	A	35	71.14	71.17	4.38	4.63	5.53	5.56	F

${ }^{a}$ See Experimental. ${ }^{b}$ Recrystallization solvents: $\mathrm{E}=$ ethanol, $\mathrm{PE}=$ petroleum ether (b.p. $60-90^{\circ}$). ${ }^{c}$ Lit. ${ }^{8}$ m.p. $97.0-97.5^{\circ}$. ${ }^{d}$ Lit. ${ }^{1}$ m.p. 58°.
tial therapeutic agents. The aldoxime ethers are listed in Table I, while the ketoxime ethers are listed in Table II. The carbonyl and imino infrared absorption bands are compiled in Table III.

Experimental

All melting points are corrected. The yields represent the quantity of analytically pure material obtained. The starting materials were purchased from various sources, except those which are mentioned below. The infrared spectra were obtained using KBr plates in a Perkin-Elmer Model 21 spectrophotometer.

Pyrrole-2-carboxaldehyde. -The method of Silverstein, et al., ${ }^{9}$ was used. There resulted a 68% yield of product which boiled at $118-120^{\circ}\left(27-29 \mathrm{~mm}\right.$.) [lit. ${ }^{9}$ b.p. $78^{\circ}\left(2 \mathrm{~mm}\right.$.)], m.p. $44-45^{\circ}$ (lit. ${ }^{9}$ m.p. 44-45 ${ }^{\circ}$.

N-Methylpyrrole-2-carboxaldehyde.-The method of Silverstein, et al., ${ }^{9}$ was used. A yield of 69% was obtained with the main fraction boiling at $85-88^{\circ}\left(23 \mathrm{~mm}\right.$.) [lit. ${ }^{9}$ b.p. $75-76^{\circ}$ (11 mm.)].

[^1]Tablae III
Cabbonyl and Im1No Infrared Absurption Bands ${ }^{\text {a-c }}$

Conipd.	$6=0 . \mu$	$6=N, \mu$
I	$5.78,5.85$	6.17
II	$5.80,5.88$	\ldots
III	5.82	16.19
IV	5.70 .5 .77	6.15
V	$5.73,5.91$	6.12
VI	5.76	6.17
VII	5.80	6.18
VIII	$5.67,5.74$	6.22
IX	5.77	6.21
X	5.77	6.21
XI	5.83	6.16
XII	5.79	6.20
XIII	5.81	6.17
XIV	$5.78,5.84$	6.16
XV	$5.80,5.85$	15.19
XVI	$5.66,5.73$	6.04
XVII	$5.82,5.86$	6.08
XVIII	$5.80,5.86$	6.16
XIX	$5.82,5.87$	6.15

${ }^{a}$ All spectra were obtained using KBr plates. ${ }^{b}$ The presence of two carbonyl bands indicates a mixture of monomer and dimer in the solid state. On the basis of earlier work [see L. J. Bellamy, "The Infared Spectra of Complex Molecules," John Wiley and Sons, Inc., New York, N. Y., 1958; E. J. Hartwell, R. E. Richards, and H. W. Thonıpson, J. Chem. Soc., 1436 (1948); M. St. C. Flett, ibid., 962 (1951)] the lower wave-length band has been assigned to the carbonyl absorption of the monomer while the higher wave-length band has been assigned to the carbonyl absorption of the dimer. © F. Mathis, Compt. Rend., 232, 505 (1961), reported that infrared absorption bands due to oxine innino groups lie in the $5.95-6.20 \mu$ region. His studies indicated that aromatio oximes absorbed at higher wave lengths than did the aliphatic oximes. The same effect was observed in this work on oxime ethers. An imino band in the $6-\mu$ region was not observed.

5-Nitro-2-furfural. ${ }^{10}$-This compound was used without purification.

2-Phenylcyclopentanone-Tian Zoeren's method ${ }^{11}$ for the synthesis of 2-(2-thienyl)cyclopentanone was employed. A 45% yield of product was obtained which boiled at $14 \overline{0}-148^{\circ}(16 \mathrm{~mm}$.). $n^{23} \mathrm{D} 1.5515$.

Ethyl Aminooxyacetate.-The method described by Frank and Ried ${ }^{7}$ for the preparation of methyl aminooxyacetate was entployed here. The product was an oil; yield, $53 \% ; n^{25} \mathrm{D} 1.4267$. The hydrochloride salt melted at $115-117^{\circ}$.

Anal. Calcd. for $\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{NO}_{3} \cdot \mathrm{HCl}: \mathrm{C}, 30.88 ; \mathrm{H}, 6.48 ; \mathrm{N}, 9.00$. Found: C, $30.96 ; \mathrm{H}, 6.29 ; \mathrm{N}, 9.02$.

Aminooxyacetic Acid Derivatives, Method A.-A solution of the aldeliyde or ketone and 1 equiv. of aminooxyacetic acid hemihydrochloride (Eastman) was made in about 25 times its weight of 90% ethanol. To the solution was added 3.3 equiv. of sodium acetate. The mixture was stirred and refluxed for 2 hr . The solvent was then evaporated in vacuo. The residue was slurried in :an equal volume of water and made alkaline with 10% irfueons sodium hydroxide solution. The unchanged aldehyde: or ketone was removed by filtration or by extraction with ether. The aqueous phase was then made acidic to congo red indicator paper and the product was isolated by filtration or by extraction with ether and recrystallized.

Method B.-To a solution of the aldehyde or ketone and 1 equiv. of aninooxyacetic acid hemihydrochloride in 90% ethanol (as in A) was added 1 equiv. of triethylamine and the solution was refluxed for 2 hr . The solvent was removed in vacuo. The residue was then washed with water and recrystallized.

Method C.-Benzene was substituted for 90% ethanol as the solvent, but the procedure outlined for B was otherwise employed. The reaction mixture was heterogenous during the entire reaction period.

[^2]Method D.-Aminooxyacetic acid hemiliydrochloride was allowed to react with 9 -anthraldehyde (Aldrich) (12.3 g .) aceording t.u B. A yellow solid (4.2 g .) was isolated whiel melter at 18 St 190° (lec:, but the elemental analyses ($\left.\mathrm{C}_{18} \mathrm{H}_{3} \mathrm{~N}_{4}\right)_{5}$), after two recrystallizations from ethanol, indicated that it was not the desired prodnet. This material (3 g .) was reflaxed for 5 hr . in 万 0 m . of 1.4 whenolie hydrogen chloride. The solution was filtered and evaporated in racuo. The residue was rearystallized twir. from potrolenn ether (b.p. $60-90^{\circ}$) and there resulted 1.1 g . uf rellow meedles which flnoresced blue, m.p. 69-70 ${ }^{\circ}$. This matu:rial analyzed correctly as the ethyl ester of the desired produrs.

Method E.-A solution of the aldehyde and 1 equiv. of ethyl minooxyacetate in about 25 times its weight of absolute ethanol was reflined for 2 hr. The solvent was removed in moto and the residne was recrystallized.

Acknowledgments.--The author is indebted to Mrs. Janice Hall and Mr. William F. Boyd who ran the infrared spectra, and to Mr. Martin Gordon and Mr. Raymond Snider who performed the micromalyses. The author's appreciation is also extended to Mr. John sehair who prepared the 2-plienylcy copentanone.

Agents Affecting Lipid Metabolism. XII. N,N'-Disubstituted Cyclohexane-1,4-bis(methylamines) ${ }^{1}$

Leshe (i. Humber

A yerst Resench Laboratories, Montreal, Canada
heceived June 5, 1964
The discovery of potent cholesterol biosynthesis inhilsitory activity in compounds related to $\mathrm{N}_{2} \mathrm{~N}^{\prime}$-dibenzylethylenediamine ${ }^{2}$ has led to the synthesis of trans-1,4-bis(2-chlorobenzylaminomethyl)eyclohexane, whose biological properties have already been described. ${ }^{3}$ We wish to report here, the synthesis of this compound and of a varioty of related symmetrical connpounds which retain the cyclohexane-1,4-bis(inethylamine) moiety. Tables I and II describe these compounds, and Tables III and IV describe intermediates used in their preparation.

Experimental ${ }^{4}$

Method A. N, N'-Di(2-chlorobenzylidine)cyclohexane-trans-1,4-bis(methylamine).-2-Chlorobenzaldeliyde (28.4 g., 0.2 mole) and cyclohex:me-trans-1,4-bis(nethylamine) (14.2 g ., 0.1 mole) were refluxed in benzene solution (300 ml .) until the theoretical volume of water had been collected in a Dean-Stark trap (ca. 3 hr.). The benzene was renoved in vacuo, and the residue was crystallized from benzente. It had in.p. $150-104^{\circ}$ (38.0 g .), $\lambda_{\max } 250 \mathrm{~m} \mu\left(\epsilon 31,300\right.$), $\nu_{\max }^{\mathrm{CHC}}: 1640 \mathrm{~cm} .^{-1}$.

Anal. Caled. for: $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{Cl}_{2} \mathrm{~N}_{2}: \mathrm{Cl}_{2}$ 18.31. Found: Cl , 17.9°.
$\mathbf{N}, \mathbf{N}^{\prime}$-Di(2-chlorobenzyl) cyclohexane-trans-1,4-bis(methylamine) (Table I, 4).-The above bis Schiff base (37.0 g .) was suspended in methanol (500 ml .) and sodium borohydride (7.5 g .) was added portionwise at st rate permitting gentle reflux. The mixture becane homogenenns as the reduction proceeded. After refluxing for 16 hro, the methanol was remover in vacuo and the residne was distribnted between chloroform and water. The chloroform layer was washed with water, dried ($\mathrm{Na}_{2} \mathrm{SO}_{4}$), and evaporated in vacuo to yield the product (35.5 g .) as a solid, m.p. 101-103 ${ }^{\circ}$ (ethanol). The dilydrochloride salt was prepared in methanol solution with methauolic hydrogen chloride. Crystallization yielded analytically pure material.

[^3]
[^0]: （1）A．Woll，Bull．suc．rhis．Firulve，2， 2103 （1935）．
 （2）M．Anchel and R．schwenheimer，J．Biol．Chem．，114， 539 （19364．
 （3）E．Borek and H．T．Clarke，J．Am．Chem．Soc．，58， 2020 （1936）．
 （4）M．S．Newman，W．Fones，ard M．Renoll，ibid．，69， 718 （19．47）．
 （5）D．O．Holland，British Patent 621．934（1949）：Chem．Absir．．44， $664 b$ （1950）．

 （7）A．Frank ind li．Riede，Monatsh．92， 725 （1961）．
 （8）L．Dienes．H．J．Weinberger，and S．Madoff，J．Bacteriol．，59，7i．5 （1950）．

[^1]: (9) R. M. Silverstein. E. R. Ryskiewicz. C, Willard. and R. C. Koehler, J. Org. Chem., 20, 668 (1955).

[^2]: (10) II. Gilroan and G. F. Wriglit, J. Am. Chem. Soc., 52, $25 \overline{50}$ (1930).
 (11) G. J. Van Zoeren, U. S. Patent 2.520.516 (1950); Chem. Abstr., 45. $647 d$ (1951).

[^3]: (1) For Part XI of this series see; D. Dvornik, M. Kraml, and J. F. Bagli, J. Am. Chem. Soc., 86, 2739 (1964).
 (2) M. Kraml, I. G. Humber, J. Eibuc, and R. Gandry, J. Med. Chem., 7. 500 (1964).
 (3) (a) D. Dvornik, M. Kraml, J. Dubue, and R. Gandry, J. Am. Chem Soc., 85, 3309 (1963): (b) C. Chappel. J. Dubuc. D. Dvornik, M. Givner L. Humber, M. Kraml, K. Voith, and R. Gaudry, Vature, 201, 497 (1964),
 (4) Melting points were taken on 3 Thohas-Honver apparatus and are corrected, Analyses were done by Mr. W. Turnbull and staff of our laboratories.

